
International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September 2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

A Framework for Predicting Query Response
Time at Application Development Stage

Rekha Singhal

Abstract— In a typical database application environment, emphasis has been given on promising Service level Agreements (SLAs) for

perceived query elapsed response time; the SQL queries are tested on the small size of database at application developmentstage, which

may be a fraction of the production database. As time progresses the database grows and the earlier optimized queries may not hold SLA

anymore. Once the application is deployed, it becomes difficult to modify the application or alter the production system. In this paper, we

have discussed a framework for predicting the SQL query response time with growth of the database while being transparent to the

production hardware, storage subsystem and DB Server. We have discussed various factors which can impact query response time and

are also affected by the increase in the data size. We have presented a theoretical model for predicting the elapsed response time of SQL

queries and also discussed a case study of Oracle 10g for implementing the proposed framework.

Index Terms— SQL, Query, Response Time, Parsing, Data Access, Large size database, Execution, Fetching.

——————————  ——————————

1 INTRODUCTION

The advent of inexpensive computing and storage system has
led to increase in autonomic computing and hence generation
and storage of large sized data. The data intensive applications
once launched in the production environment cannot be
changed without a downtime; however data keeps growing as
time progresses. The growth in data size may impact the ap-
plication performance and violate the Service Level Agree-
ment (SLAs) promised during the application development.
 In a typical database application development, the testing of
the application is done on a size of database which may not be
realistic – especially for the banking and finance sector, as time
progresses, customer base increases and hence the data grows
in size. The SLA satisfied by the earlier application in terms of
promised query response time etc, may not hold true for the
same application with increased data size and workload. This
is because of the testing methodology which was done on a
subset of the projected data size. Sometimes, it is difficult to
arrange all the resources for doing testing in the real environ-
ment. Large storage may be required to store trillions of rec-
ords and conduct testing on that. However, an organization
may not be willing to purchase this entire infrastructure at the
testing stage. Moreover, even if resources are available, it may
take days to load large database for a single query.
This raises the need to have a tool which can predict the per-
formance of a database application on the same database (or
DB), grown in size, a number of years later. It is required to
have a tool to estimate the performance of the database appli-
cation (or SQL queries) with increase in size of the database.
With this one can take appropriate decisions to opti-
mize/modify the queries, or application logic, or change DB
server settings, or replace the hardware to avoid degradation
in application performance over a time period. We propose a
framework for predicting the response time of SQL queries
with increase in size of the database such that it is independ-
ent of the hardware platform and database server on which
the application is developed and tested.
The Section 2 discusses the related work in this direction. Sec-
tion 3 illustrates the proposed framework. Section 4 derives

the theoretical analysis for the performance metrics using the
framework. Section 5 discusses a case study for use of the
proposed framework. Finally, we conclude in Section 6.

2 RELATED WORK

In database application domain, query response time has been
a serious concern. In [1, 2, 3, 8 and 10], authors have discussed
ways of optimizing queries to improve query response time.
Broder [1] uses dynamic programming techniques with two
levels for query evaluations - first level does approximate
evaluations of query’s terms and then at second level query is
fully evaluated. With this they could eliminate full evaluations
and hence improve query performance. In [10], authors con-
sider progressive optimization of query instead of optimizing
it using estimated cardinality of the tables in the query. They
continuously check the estimated cardinality with actual car-
dinality perceived by query and stops to do re-optimize if the
deviation is too large. Tolga [8] discussed creating a query
execution plan on the fly using knowledge about load, com-
munication delay on the system and the query optimizer’s
execution plan.
Huaiming [4] proposes a prediction model to forecast query
predicates assuming short time events which have similarity
in predicates and then to choose them for speculative execu-
tion to optimize the query response time. However, all of
them optimize the queries for the current system and the exist-
ing database size; these optimizations alone may not give sat-
isfactory results as database size increases over a period of
time. One needs a tool to understand the performance of the
optimized query for large data size which is generally the case
for data intensive application.
Perros [6] uses regression model for predicting response time
of query on database system. In [5], author proposes an online
performance model for database appliances using an experi-
ment-driven statistical modeling approach. They use a Bayesi-
an approach and build novel Gaussian models that take into

839

IJSER

International Journal of Scientific & Engineering Research Volume 4, Issue 9, September 2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

account the interaction among concurrently executing queries
and predict response times of individual DB queries. Howev-
er, none of them have addressed the prediction of query re-
sponse time with increase in database size at the application
development stage.
Large size database has been always been an issue for perfor-
mance especially in data warehouse system for SQL read que-
ries. Kraft [14] attempts to optimize a sequence of SQL queries
which are part of a single OLAP query. They exploit the se-
mantics of these related queries in sequence; rewrite them by
modifying at the query optimization layer and finally sending
for execution.
Some of the researchers [15] have addressed this issue by
compromising on query result which is an approximation of
actual result. Actually, most of the data warehouse users may
prefer to have faster response time than to actual result. How-
ever, in OLTP, the accuracy of retrieved data cannot be com-
promised. A query slow down is implicit with increase in data
size, however, one may like to know the extent of degradation.
Therefore, it is required to predict query response time for the
projected large size database by doing extrapolation of the
measures taken at the initial database size. Reference [12] has
put up a framework using measurements to observe the query
response time for grid architecture with variation of various
parameters including the doubling of grid system which in-
cludes size of database as well as workload. However, this
does not validate the query response time variation with in-
creased database size while addressing various DBMS fea-
tures. Their entire focus has been on the grid system as whole.
However, we propose a framework to estimate a query per-
formance on a large size database at application development
stage while concentrating on DB behavior while processing a
query.

3 FRAMEWORK

We consider a two tier architecture where the application is
hosted on the database server to avoid the time delays which
may be introduced in the query result due to the query
processing at the web server.

The response time for a query on database system depends on
followings.

• Design of the query: Any operational problem may be
formulated in form of SQL query; there may be many SQL
constructions possible for the same problem. For example,
use of hints, use of joins instead of sub query and many
others techniques as discussed in [16] which may improve
the query response time.

• Database schema: Use of indexes, table partitioning and
de-normalization may affect the read query response time.

• Database server: Concurrency control techniques and
query optimizer choices may affect the query response
time. Several system level settings such as size of database
cache, library cache , database operation cache and shared
pool can directly impact the query performance.

• Workload on the server- number of concurrent queries,
size as well as type of transactions may imapact the
performance of a query. Most of application developer are
interested in query performance in isolation, where
workload could be stated as 1, and this may not have
significant impact on query performance.

• Disk Subsystem: Data access time from disk subsystem
can affect the query response time. This in turn may
depend on how data is accessed, storage cache, storage
hierarchy and storage hardware.

• Hardware platform: Speed of CPU, number of
cores/processor, size of memory guides the resources
which could be available for DB server and hence may
impact the query performance.

Please, note that the affect of the hardware platform and disk
subsystem on query performance do not vary with size of the
database.

As time progresses, both database size as well as transaction
workload may increase on the system which can affect the
query response time. Both problems are orthogonal to each
other. The variation of query response with increase in the
workload on the system can be modeled for a fixed size of
database. The concurrent workload model can be plugged in
our framework while doing the prediction. Similary, one may
model query performance with growth of database size
keeping workload fixed (say query in isolation) and which
may get plugged in the final framework along with
concurrency model.

A query with a specific design on a specific DB server with a
particular schema may perceive best response time, however
as database size grows that query design may no longer yields
best results. Moreover, schema may require changes in terms
of index creation etc. to promise the same performance for the

Fig. 1. Stages of Query Processing

840

IJSER

International Journal of Scientific & Engineering Research Volume 4, Issue 9, September 2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

query on the new large sized database. Various types of
caches at DB server may need to be upgraded to improve the
response time of query on database of increased size. The
prediction tool may be used to estimate the performance of a
query in future. If it is not acceptable, the user has an option to
modify the query design or change DB server settings to get
desired performance. We shall look at query processing at fine
granularity level to formulate a framework which shows the
parameters which change with increase in database size and
affect the query response time as well.

A SQL query initiated through an application goes through
three main stages during its processing – parsing, execution
and fetching as shown in Fig 1.

3.1 Parsing

In this phase a SQL query is parsed to check its syntax and run
through the query optimizer to decide its path of execution.
Time taken to parse a query depends on how it is structured,
e.g. use of bind variables in Oracle reduces the number of hard
parse and hence the elapsed time. The elapsed time at this
stage is not dependent on the size of the database; however
the path chosen by the query optimizer may depend on size of
the tables involved in the SQL query. The structure of a query
plays a very important role here in deciding the path of execu-
tion and hence the type and number of operations, which in
turn may affect the query response time. For example, use of
hints may direct the query optimizer to use indexes or hash
join which could speed up the query. Also, an absence of in-
dex may force the DB to do full scan of the database to answer
the query which may lead to increase in elapsed time with
increase in size of database.

3.2 Execution

Once a query is parsed it is ready for execution. During this
phase, the query is executed which may involve a sequence of
computations and fetching operations, from storage subsys-
tem, overlapped with each other. However, contributions to
query response time from both execution and fetching are dis-
joint. The execution phase primarily contributes towards the
computations in the query. Therefore, we model them as two
separate phases in query processing as shown in Fig 1.
In execution phase, DB concurrency control unit and hard-
ware platform have critical role to play in deciding the query
response time. The path chosen by query optimizer as dis-
cussed in the above phase is executed in this phase. The type
and number of operations to be executed contribute to the
query elapsed time. The cost of these operations is dependent
on the size of database. For example, the size of index depends
on the size of database; the hash join operation will be de-
pendent on the size of tables involved in the join etc.
First, DB concurrency control mechanism decides whether the
query can be scheduled for execution based on its conflict with
other queries executing in parallel. This leads to waiting time
for the query before it is scheduled for execution, which gets
added up to the elapsed time. Probabilistically, larger the size
of database, lesser is the chances for queries to conflict. In oth-
er words waiting time due to conflict may get reduced with

increase in size of the database. However, if a query happens
to access large data sets, then its high execution time may in-
crease the waiting time for the conflicting queries.
 Once the query is scheduled for execution, it is up to the OS to
execute it either in parallel with other queries each on different
processor (inter query parallelism), or it may execute single
query on multiple processors (intra query parallelism), or pipe
lining or serial execution in case of single processor. Each of
these modes of executions will have affect on query response
time, however the choice of mode of execution is independent
of the size of the database, and this will not change with
growth of database.

3.3 Fetching

An execution of a query will definitely leads to retrieving and
may be modifications of data, (in case of DML queries), from
the database. A record may be returned from the database
server cache or it may be required to get fetched from the stor-
age subsystem where the database is stored. The query
elapsed time is small in the former case as compare to the lat-
er. This choice depends on the caching policy of the DB server
as well as the size of system cache. This is independent of the
size of database. However, probability of finding a requested
record in cache is more for a small size database.
In other case, if the record is not in the cache, the record is
fetched from the disk subsystem. A storage subsystem could
be a single hard disk, SAN or JBOD. The time elapsed in fetch-
ing a record will depend on the performance of the disk sub-
system which will contribute to the total query response time.
Accessing (reading or modifications) a record from the disk
subsystem is independent of the size of the database- i.e. it
does not change with increase in the database growth.

3.4 Extrapolation

Based on the phases of query processing as discussed above,
we can model each of the phase as function of size of database
and use them for estimating a query response time. The
framework for predicting query response time with grwoth in
database is shown in Fig 2.
The prediction tool takes as input the SQL query under evalu-
ation, the database schema, the database/tables size, current
DB server settings and the infrastructure details which include
hardware details such as memory size, number of cores etc.
These inputs could be specified in a language which could be
interpreted by the tool. The tool shall examine the query and
estimate the given query’s response time consulting the vari-
ous models as shown in Fig 2. Each of these units could be a
mathematical model or may be based on experimental results.
We are currently working on building these models and shall
publish the results later.

841

IJSER

International Journal of Scientific & Engineering Research Volume 4, Issue 9, September 2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Fig 2 shows a generalized framework, however, this could be
curtailed depending on the required application. For example,
at application development stage, one may be more interested
to know performance of query in isolation to modify the query
design or schema design. In such a case, workload is a single
query; therefore, framework does not need Concurrent Work-
load Model. Similary, semantics knowledge of query may help
in limiting the focus of the framework. A disk intensive query
environment may need sophisticated Disk I/O Subsystem
Model and a simple (e.g. a linear a mathematical) Execution
Unit model may be sufficient. Further, one may use data ac-
cess pattern of queries to model the Disk access time. A query
may access data as a sequence of data blocks (Full Table Scan)
or using an index. Further, index scan could be either using
Primary Key Index or Secondary Key Index (or Non Primary
Key Index). In these entire scans data acess pattern is different
as shown in Fig 2a, which impact the disk access time. Simi-
lary, a compute intensive query may require proper modeling
of CPU system Model.

4 THEORETICAL FORMULATION

A query response time quantitatively could be function of the
followings.

1. Size of the query result (expected number of rows *
expected size of each row) which may be dependent

on size of database.
2. Concurrency control mechanism of the DB server.
3. Query execution cost which may depend on the ac-

cess path chosen by the query optimizer, size of serv-
er’s various caches.

4. Number of processors in the DB server
5. Size of the Cache at DB server which is dependent on

the hardware platform.
6. Disk subsystem performance.

With reference to Fig 1, query processing time (QRT) could be
formulated as:
𝑄𝑅𝑇 = 𝑃𝑎𝑟𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 + 𝐹𝑒𝑡𝑐ℎ𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 + 𝑊𝑎𝑖𝑡 𝑇𝑖𝑚𝑒 +

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (1)

 where, Wait Time is the extra time contributed in a query exe-
cution due to presence of other queries on the system.
Let us assume that we will ignore all those time constants
which are invariant to the size of database so that we can have
only those components which will contribute to the elapsed
time with growth of database size.
Consider a database of size ‘N”. Parsing time is independent
of the database size. So we will ignore this component. Wait
Time may differ for different database servers due to their
different concurrency control algorithm and policies. It
primarily depends on the number of the conflicting queries ,
Q, and the type of queries. For heterogeneous mix of queries,
it may be function of database size as well. Therefore, this part
of the query execution time shall be provided by the database
concurrency control model as shown in Fig 2, and represented
as W(Q,N).
Execution time depends on two parameters – system
architecture (number of processors, memory size etc.) and
execution path given by the parsing unit. The former is
independent of the size of the database, however later
depends highly on the database size. The expected number of
rows to be returned by the DB Server increases with database
size- the rate of increase will depend on the model of query
optimizer. Let’s assume,
 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 𝐾(𝑁) + 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 (2)
where K(N) models the number of operations with their costs
and the cardinality set of the data processed by the query.
Fetching time depends on the DB cache size and the disk
subsystem. Let’s assume ,
 𝐹𝑒𝑡𝑐ℎ𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 = 𝐹(𝑁) + 𝐻(𝑁) × 𝑇 + (1 − 𝐻(𝑁)) ×
𝑇 (3)
where F(N) returns number of fetches which depends on the
path executed at the execution phase and the size of
database.(Please note we assume that each fetch returns same
number of bytes and all fetches together corresponds to the
cardinality set of the query result.). H(N) is the hit ratio for DB
cache- this decreases with increase in the number of
concurrent transactions as well as with size of database for
uniform data access, 𝑇 is the average time taken to
retrieve a record from cache, 𝑇 is the average
time taken to access a record from the storage subsystem.
Therefore, using equations 1, 2 and 3, we get QRT as
 𝑄𝑅𝑇 = 𝐹(𝑁) +𝑊(𝑄, 𝑁) + 𝐾(𝑁) + 𝐻(𝑁) ∗ 𝑇 +
(1 − 𝐻(𝑁)) ∗ 𝑇 (4)

Once we feed in these various models we can get approximate
query response time and can observe its behaviour with

Fig. 2. Framework for Query Elapsed Response Time Prediction

Fig. 2a. Data Access pattern

842

IJSER

International Journal of Scientific & Engineering Research Volume 4, Issue 9, September 2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

increase in the size of the database.

5 CASE STUDY
We consider a specific DB server, Oracle 10g [16], as a case
study to show the applicability of the framework. Oracle, in
dedicated mode, has many monitoring processes and ‘or-
acleorcl’ for processing the queries. The Orcl process will do
all the job of parsing, executing and fetcing. Writing, in case
of update and insert operation, is done by a separate process
called DBWR.
To estimate a query response time on Oracle 10g, according to
the proposed framework, we need model for functions K(N),
Q, F(N), H(N), 𝑇 and 𝑻 .

 𝑇 and 𝑻 . can be obtained from the in-
putted infrastructure details, the CPU system and Disk I/O
subsystem models. These are in terms of time per fetch. The
value of Q is dependent on the concurrency control policy of
the DB server and may be obtained from the DB server model.
A DB server using strong serialization approach may have
high value for Q, however DB server using semantics of appli-
cations may work with weak serialization and decrease the
number conflicting transactions, hence low value for Q. This
can be obtained from Concurrent workload model.
F(N) is dependent on size of the query result. It returns the
number of fetches required to produce the query result. It
takes certain inputs, such as DB schema, as shown in Fig 3. In
case of oracle, DB schema can be imported in the model sys-
tem using dump facility. A SQL read may only read from the
storage subsystem, while a SQL update may perform both
read and write on the storage subsystem. For simplicity, we
assume only SQL read so that in later case the time taken will
be just twice of the former one. The challenge here is to esti-
mate the number of rows returned by the query which will be
independent of the access path chosen by the execution unit,
but dependent on the size of database. Oracle has a tool called
Explain plan[16], which gives an estimate of number of rows
returned by using information about DB schema and size of
various tables in the database. Another tool, TkProf, gives an
exact number of fetches performed by the query during its
execution. Since we do not have mechanism of executing que-
ry on the future database, we can do measurements by execut-
ing a test workload and build a model using TkProf. Both the-
se tools can be used together, as shown in Fig 3, to build F(N)
which can return size of query result on inputting future size
of database.

K(N) is the expected execution cost of the query which de-

pends on the DB server system parameters such as cache etc,
query size result and the cost of the access path which in-
cludes operations performed for executing the query. Please
note that the cost of the operations performed after fetching
such as ‘DISTINCT’ etc. is counted in K(N) only. The query
size result can be provided by F(N). As discussed before, in
Oracle 10g, Explain Plans can give expected access path fol-
lowed by the query for execution and TkProf can provide ac-
tual execution cost of the query. The breakup of the execution
cost in terms of cache reads and physical reads can be obtained
by running AWR[16] reports in Oracle. Some of the operations’
cost such as join etc. depends on the DB server settings (e.g.
higher PGA_TARGET_AREA, lower cost of sort operation),
which can be obtained from AWR reports. These three tool can
be used together, as shown in Fig 4, to model K(N). As dis-
cussed above, in Oracle, H(N) and W(Q,N) can be modeled by
doing measurements using AWR[16] on the given system.

Consider TPC-H [17] benchmarks with one of its query
Q6.sql, which is a 'select on lineitem table with filter conditions',
and its response time to be predicted for DB size 8GB with no
conflicting workload. Assuming, we have Oracle DB model,
CPU model and Local disk access for data, the model will work
as follows.

W(0,N) = 0, from the AWR reports. K(8GB) will be obtained
from DB model in terms of number of operations and per oper-
ation unit response time, which turn out to be 10 sec. Disk Sys-
tem Model shows that = 0.00000002 sec and = 0.00008 sec.
F(8GB) will be 877591 logical reads as given by the Fetching
model. AWR reports shows H(8GB)=0.1, Therefore putting val-
ues in equation 4,

QRT = 10 +0+877591*(0.1*0.00000002+0.9*0.00008)
QRT = 73 secs and the actual measurements shows ERT to

be 63 secs. There is an error of 15%.

Fig. 3 Model for Fetching Unit, F(N).

Fig. 4 Model for Execution Unit, K(N).

843

IJSER

International Journal of Scientific & Engineering Research Volume 4, Issue 9, September 2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

6 CONCLUSION

The paper has discussed a need to predict query response time
for large database system without actually running the query
at application development stage. We have presented a
framework to estimate the query response time, for large da-
tabase system, which depends on the parameters affected by
the growth of the database. The framework consists of DB
concurrency model, CPU system model, IO Subsystem Model
which in turn gives rise to Fetching and Execution Model.
These models will be developed in our future work. We have
also given a theoretical formulation of the framework. We
have presented a case study of Oracle 10g on using the pro-
posed framework for estimating the query response time on
large sized database. Our future work will detail out the mod-
el for the executing and fetching units of the proposed frame-
work.

REFERENCES

[1] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, J. Y. Zien. Efficient

Query Evaluation Using a Two-Level Retrieval Process. CIKM 2003.

[2] Bini, T.A.; Lange, A.; Sunye, M.S.; Silva, F.; Stableness in large join

query optimization,Computer and Information Sciences, 2009.

[3] Hameurlain, A.; Morvan, F., An overview of parallel query optimi-

zation in relational systems, Proceedings of Database and Expert

Systems Applications, 2000.

[4] Song Huaiming; Wang Yang; An Mingyuan; Wang Weiping; Sun

Ninghui; Query Prediction in Large Scale Data Intensive Event

Stream Analysis Systems, Proceedings of Grid and Cooperative

Computing, 2008.

[5] Muhammad B. S. , Umar F. M., Omar Z. K., Ashraf A., Pascal P.,

David J. T, A bayesian approach to online performance modeling for

database appliances using gaussian models, Proceedings of the 8th

ACM international conference on Autonomic computing, June 2011.

[6] H. G. Perros, A model for predicting the response time of an on-line

system for electronic fund transfer, ACM SIGMETRICS Performance

Evaluation Review, Volume 12 Issue 1, Winter 1982-1983

[7] Rodney L., Managing Data Growth in SQL Server, 21 January 2010,

http://www.simple-talk.com/sql/

[8] Tolga U., Michael J. F. , Laurent A., Cost-based Query Scrambling

for Initial Delays, ACM SIGMOD Conference 1998

[9] Minos N.G, Philip B.G, Approximate Query Processing: Taming the

TeraBytes, In processdings of SIGMOD 2011

[10] Volker M.,Vijayshankar R., David E. S., Guy M. L.,Hamid P., Robust

Query Processing through Progressive Optimization, SIGMOD Con-

ference, 2004.

[11] Deepak S.,Umesh S., Query Optimizer Model for Performance En-

hancement of Data Mining Based Query, International Journal of

Computer Science & Communication, Vol. 1, No. 1, January-June

2010, pp. 235-237.

[12] L. Field, M. W. Schulz, F. Ehm Scalability and Performance Analysis

of the EGEE Information System, International Conference on Com-

puting in High Energy and Nuclear Physics (CHEP’07) IOP Publish-

ing, 2007

[13] Florian W., Cesar Galindo-Legaria, Counting, Enumerating, and

Sampling of Execution Plans in a Cost-Based Query Optimizer, ACM

SIGMOD 2000.

[14] T.Kraft, H. Scwarz, R.Rantazu and B. Mitschang, Coarse- grained

optimization:Techniques for rewriting SQL sequences, 29th confer-

ence of VLDB, 2003.

[15] M. Garofalakis, P. Gibbons,Approximate Query Processing:Taming

the tetrabytes, Information Science, Research Center, Bell Labs,

VLDB, 2001.

[16] R. Niemiec, Oracle Database 10g performance Tuning, Oracle Press,

2007.

[17] TPC-H Benchmark, url:http://www.tpc.org/tpch.

844

IJSER

